准备测试数据
public static void main(String[] args) {
InfluxDB influxDB = InfluxDBFactory.connect("http://192.168.41.128:8086", "root", "root");
String dbName = "mydb";
influxDB.query(new Query("CREATE DATABASE " + dbName));
long time = 1600327592000L;
// 每张表内5w条数据
int count = 50000;
while (count > 0) {
System.out.println(count);
count--;
// 每条数据间隔5秒
time = time + 5000;
BatchPoints batchPoints = BatchPoints
.database(dbName)
.tag("async", "true")
.consistency(InfluxDB.ConsistencyLevel.ALL)
.build();
for (int i = 0; i < 10000; i++) {
// 表名node-0 ~ node-9999,共10000张表,数据随机生成
Point point1 = Point.measurement("node-" + i)
.time(time, TimeUnit.MILLISECONDS)
.addField("idle", new Random().nextInt(100))
.addField("user", new Random().nextInt(100))
.addField("system", new Random().nextInt(100))
.build();
batchPoints.point(point1);
}
influxDB.write(batchPoints);
}
influxDB.close();
}
使用正则表达式查询测试
目前influxdb
支持在以下场景中使用正则表达式:
field keys
andtag keys
in theSELECT
clausemeasurements
in theFROM
clausetag values
andstring field values
in theWHERE
clause.tag keys
in theGROUP BY
clause
-- 查询格式
-- Supported operators
-- =~ matches against !~ doesn’t match against
SELECT /<regular_expression_field_key>/ FROM /<regular_expression_measurement>/ WHERE [<tag_key> <operator> /<regular_expression_tag_value>/ | <field_key> <operator> /<regular_expression_field_value>/] GROUP BY /<regular_expression_tag_key>/
-- 测试用例
SELECT /l/ FROM "h2o_feet" LIMIT 1
SELECT MEAN("degrees") FROM /temperature/
SELECT MEAN(water_level) FROM "h2o_feet" WHERE "location" =~ /[m]/ AND "water_level" > 3
SELECT * FROM "h2o_feet" WHERE "location" !~ /./
SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" =~ /./
SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND "level description" =~ /between/
SELECT FIRST("index") FROM "h2o_quality" GROUP BY /l/
测试使用正则表达式进行切面查询
-- 查询某个时间点,所有表的数据,切面查询
SELECT * FROM /node-/ WHERE time='2020-09-18T01:43:27Z'
-- 查询node-1001,node-1002,node-1003,node-1004,node-1005数据
SELECT * FROM /(node-100)[1-5]/ WHERE time='2020-09-18T01:43:27Z'